EVALU	ATING	EXP	RESSI	DNS / FL	INCTIONS	<u> </u>	calculatio	n / process	
evaluati	ng an e	xpression	on or fun	ction mean	s creating a		Domain	Range	
table of	values	which	visually	represent	s a		Replacement Set	Answer Set	
graph (scatte	r plot)					X	У	
							0	y-intercept	starting point
						solution	x-intercept	0	
CALCU	LATIC	N / PF	ROCESS	5					
Paper:		Order	of Oper	ations , Sy	nthetic Subs	stitution-D	ivision		
Calcula	itor:	Home S	Screen ,	Table Scr	zen , Graph	Screen , l	ist Screen		

Order of Operations	s Numerica	I Review	
7 - 4 + 3 ×	c 0 + 3	6 ÷ 2(1+2)	$2^3 - 1 \div 2^2 \times 4$

		_11	•		tal. (\				-1/->	
Order of Operations	always re	always replace the variable(s) with () then substitute replacement value(s)									
order of Operations	doing so v	errors									
Expression			. 2			•					
Function			2X	- 5x +	4 (when >	c = -2				

Synthetic Substitution-Division		(1)	ORDER the expression / function
			all variable terms must be accounted for / listed in
			descending order of the exponents
lownload	synthetic template		if a variable term is MISSING use ZERO as a
			coefficient place holder for that variable term
		(2)	LIST the coefficients - bring the first coefficient DOWN
		(3)	MULTIPLY "below the line" to the domain value
			place answer DIAGONAL right
		(4)	ADD down

Expression		5x + 4 when $x = -2$									
Function				5X 1	· • ·	wnen x	= -2				
domain value			coeff	icients							
x =								()	
	\$										
							- v	if	y = 0 t	hen	
							= y		x value is a solution		

Expression	2.2 54										
Function		2x² - 5x + 4 when						x = -2			
domain value			coeff	icients							
=								(,)	
	\$										
							,	if	y = 0 tl	nen	
						= y	× value is a solution				

<u>Historical Perspective</u>

Who Invented Synthetic Division?

Synthetic division was invented in 1809 by Paolo Ruffini.

This process was created to more efficiently perform long division between polynomials, which represents <u>evaluating polynomials</u> and also <u>solves polynomial functions</u> when the remainder in the process <u>equals zero</u>.

Goolo Buffini